989 resultados para Cultivo integrado


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Para avaliar um sistema integrado de aquicultura foram realizadas análises microbiológicas da água utilizada neste sistema e determinada a incidência e resistência antimicrobiana dos enteropatógenos no ecossistema relacionado. As amostras de água testadas apresentaram 32,9% de taxas de coliformes fecais (≤1.600/100mL), de acordo com a OMS para piscicultura em águas residuais. Salmonella spp. foram detectadas em 14,5% das amostras. De um total de 33 cepas, 15,1% eram resistentes a um ou dois antimicrobianos testados e resistência a múltiplas drogas não foi observada. Aeromonas spp. foram identificadas em 91,6% das amostras. De um total de 416 cepas, resistência a uma classe de antimicrobianos foi observada em 66,3% e a multirresistência às drogas em 37,7%. Na avaliação da virulência dos isolados de Aeromonas hydrophila, 85,3% das cepas apresentaram Beta-hemólise nos três diferentes tipos de eritrócitos empregados e 99,1% nos eritrócitos de coelho e cavalo, sendo possível a caracterização através da PCR do gene aerA e lip, em 100% das amostras. Os resultados obtidos apontam para a relevância quanto às vantagens da implementação de um sistema integrado, disponibilizando alimentos com custo reduzido, porém este sistema necessita de um controle rígido e efetivo para que estes produtos não constituam veículos para a disseminação de doenças.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated culture of seaweed and aquatic animals is an ancient practice in Asian countries. The expansion of this practice to western countries is consequence of the recognition of this system as a sustainable alternative that allows economical diversification and mitigation of environmental impacts generated by effluents of aquaculture. This study evaluated the growth of the seaweed Gracilaria caudata and of the shrimp Litopenaeus vannamei in monoculture (shrimps) and integrated culture (shrimps and algae) systems, and accessed the effect of the seaweed in the water quality. There were two treatments in the experiment: monoculture (shrimps) and integrated culture (shrimps/ algae). The organisms were cultured in 6 aquaria (10L) filled with seawater (35.0±0.0 PSU and 28.1±0.4°C) for 28 days. The nutrients of water (PO43-, NH4+, NO2-, NO3- and DIN), the biomass and the relative growth rate (RGR, % day-1) of seaweed and shrimps were measured weekly. The parameters pH, temperature, salinity and dissolved oxygen were measured daily. The concentration of NH4+ in integrated culture (62.8±25.2µM) was lower (Mann-Whitney p<0.001) than in monoculture (85.6±24.3µM). The mean of PO4- in monoculture (10.4±4.6µM) was markedly higher (Mann-Whitney; p=0.024) than that in integrated culture (8.7±4.1µM). The level of dissolved oxygen in integrated culture (6.0±0.6mg/L) was higher (t-Student; P=0.014) than that in shrimp monoculture (5.8±0.6mg/L). The mean values of the parameters pH, NO2-, NO3- and DIN were 7.5±0.2, 10.1±12.2µM, 24.5±3.2µM and 120.17±30.76µM in monoculture, and 7.5±0.2, 10.5±13.2µM, 27.4±3.5µM and 100.76±49.59µM in integrated culture. There were not differences in these parameters between treatments. The biomass and RGR of seaweed reached 15.0±1.9g and 7.4±2.8% day-1 at the end of the experiment. The performance of shrimp was favorable in monoculture (1.5±0.8g; 5.7±1.6% dia-1) and in integrated culture (1.5±0.7g; 5.2±1.2% dia-1), and the rate of survival was 100% in both treatments. The tolerance and favorable performance of Gracilaria caudata suggest that this seaweed might be integrated into shrimp (Litopenaeus vannamei) culture systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated culture of seaweed and aquatic animals is an ancient practice in Asian countries. The expansion of this practice to western countries is consequence of the recognition of this system as a sustainable alternative that allows economical diversification and mitigation of environmental impacts generated by effluents of aquaculture. This study evaluated the growth of the seaweed Gracilaria caudata and of the shrimp Litopenaeus vannamei in monoculture (shrimps) and integrated culture (shrimps and algae) systems, and accessed the effect of the seaweed in the water quality. There were two treatments in the experiment: monoculture (shrimps) and integrated culture (shrimps/ algae). The organisms were cultured in 6 aquaria (10L) filled with seawater (35.0±0.0 PSU and 28.1±0.4°C) for 28 days. The nutrients of water (PO43-, NH4+, NO2-, NO3- and DIN), the biomass and the relative growth rate (RGR, % day-1) of seaweed and shrimps were measured weekly. The parameters pH, temperature, salinity and dissolved oxygen were measured daily. The concentration of NH4+ in integrated culture (62.8±25.2µM) was lower (Mann-Whitney p<0.001) than in monoculture (85.6±24.3µM). The mean of PO4- in monoculture (10.4±4.6µM) was markedly higher (Mann-Whitney; p=0.024) than that in integrated culture (8.7±4.1µM). The level of dissolved oxygen in integrated culture (6.0±0.6mg/L) was higher (t-Student; P=0.014) than that in shrimp monoculture (5.8±0.6mg/L). The mean values of the parameters pH, NO2-, NO3- and DIN were 7.5±0.2, 10.1±12.2µM, 24.5±3.2µM and 120.17±30.76µM in monoculture, and 7.5±0.2, 10.5±13.2µM, 27.4±3.5µM and 100.76±49.59µM in integrated culture. There were not differences in these parameters between treatments. The biomass and RGR of seaweed reached 15.0±1.9g and 7.4±2.8% day-1 at the end of the experiment. The performance of shrimp was favorable in monoculture (1.5±0.8g; 5.7±1.6% dia-1) and in integrated culture (1.5±0.7g; 5.2±1.2% dia-1), and the rate of survival was 100% in both treatments. The tolerance and favorable performance of Gracilaria caudata suggest that this seaweed might be integrated into shrimp (Litopenaeus vannamei) culture systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated culture of seaweed and aquatic animals is an ancient practice in Asian countries. The expansion of this practice to western countries is consequence of the recognition of this system as a sustainable alternative that allows economical diversification and mitigation of environmental impacts generated by effluents of aquaculture. This study evaluated the growth of the seaweed Gracilaria caudata and of the shrimp Litopenaeus vannamei in monoculture (shrimps) and integrated culture (shrimps and algae) systems, and accessed the effect of the seaweed in the water quality. There were two treatments in the experiment: monoculture (shrimps) and integrated culture (shrimps/ algae). The organisms were cultured in 6 aquaria (10L) filled with seawater (35.0±0.0 PSU and 28.1±0.4°C) for 28 days. The nutrients of water (PO43-, NH4+, NO2-, NO3- and DIN), the biomass and the relative growth rate (RGR, % day-1) of seaweed and shrimps were measured weekly. The parameters pH, temperature, salinity and dissolved oxygen were measured daily. The concentration of NH4+ in integrated culture (62.8±25.2µM) was lower (Mann-Whitney p<0.001) than in monoculture (85.6±24.3µM). The mean of PO4- in monoculture (10.4±4.6µM) was markedly higher (Mann-Whitney; p=0.024) than that in integrated culture (8.7±4.1µM). The level of dissolved oxygen in integrated culture (6.0±0.6mg/L) was higher (t-Student; P=0.014) than that in shrimp monoculture (5.8±0.6mg/L). The mean values of the parameters pH, NO2-, NO3- and DIN were 7.5±0.2, 10.1±12.2µM, 24.5±3.2µM and 120.17±30.76µM in monoculture, and 7.5±0.2, 10.5±13.2µM, 27.4±3.5µM and 100.76±49.59µM in integrated culture. There were not differences in these parameters between treatments. The biomass and RGR of seaweed reached 15.0±1.9g and 7.4±2.8% day-1 at the end of the experiment. The performance of shrimp was favorable in monoculture (1.5±0.8g; 5.7±1.6% dia-1) and in integrated culture (1.5±0.7g; 5.2±1.2% dia-1), and the rate of survival was 100% in both treatments. The tolerance and favorable performance of Gracilaria caudata suggest that this seaweed might be integrated into shrimp (Litopenaeus vannamei) culture systems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo objetivou avaliar a dinâmica de sistemas integrados de manejo de um Latossolo Amarelo no desenvolvimento da cultura do milho. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. Os tratamentos foram compostos por três cultivos de milho, em sistema de integração Lavoura-Pecuária-Floresta (iLPF) (consorciado com Brachiaria ruziziensis e intercalado com eucalipto), sistema Santa Fé (cultivo integrado com Brachiaria ruziziensis) e em sistema Convencional. Foi realizada a determinação da altura (m) de planta e espiga do milho, teor de umidade dos grãos (%), produtividade de grãos (kg.ha-1, saca.ha-1 e kg.planta-1) e número de plantas.ha-1. A altura de planta e a altura de espiga não apresentaram diferença em função dos sistemas utilizados. Os sistemas iLPF e Santa Fé obtiveram os maiores valores de produção (kg.ha-1; saca.ha-1), não diferindo entre si. Proporcionaram também maior produção por indivíduo, sendo cerca de 36% superior à obtida no sistema Convencional. A Brachiaria ruziziensis consorciada com milho favoreceu o aumento na produção de grãos por área e por indivíduo em comparação ao sistema Convencional.